Cost Minimization in Metal Additive Manufacturing Using Concurrent Structure and Process Optimization
نویسندگان
چکیده
Metals-additive manufacturing (MAM) is enabling unprecedented design freedom and the ability to produce significantly lighter weight parts with the same performance, offering the possibility of significant environmental and economic benefits in many different industries. However, the total production costs of MAM will need to be reduced substantially before it will be widely adopted across the manufacturing sector. Current topology optimization approaches focus on reducing total material volume as a means of reducing material costs, but they do not account for other production costs that are influenced by a part’s structure such as machine time and scrap. Moreover, concurrently optimizing MAM process variables with a part’s structure has the potential to further reduce production costs. This paper demonstrates an approach to use process-based cost modeling in MAM topology optimization to minimize total production costs, including material, labor, energy, and machine costs, using cost estimates from actual MAM operations. The approach is demonstrated in a simple case study of a Ti64 cantilever produced with electron beam melting (EBM). Results of a concurrent optimization of the part structure and EBM process variables are compared to an optimization of the part structure alone. The results show that, once process variables are considered, it is more cost effective to include more material in the part through a combination of (1) building additional thin trusses with a faster laser speed and (2) increasing the thickness of other truss members and decreasing laser velocity to create larger melt pools that reduce the number of passes required, thereby reducing build time. Concurrent optimization of the part’s structure and MAM process parameters leads to 7% lower estimated total production costs and approximately 50% faster build time than optimizing the part’s structure alone.
منابع مشابه
Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملDevelopment of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM
Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...
متن کاملDevelopment of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM
Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...
متن کاملTurbine Blade Investment Casting Cost Estimating Model (TECHNICAL NOTES)
The objective of this research is to develop a turbine blade investment casting cost advisor model to assist a blade designer in decision-making in a concurrent engineering environment. It is a microcomputer based cost estimating system that employs a manufacturing knowledge base. The concept of the manufacturing process for blade production by the investment casting method is used to develop t...
متن کاملOptimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature
The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...
متن کامل